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Introduction, Motivation and Contributions

Introduction:
• Neural Tangent Kernel (NTK) [2]:

Θ̂(w;x, x′) = 〈∇wf (w, x),∇wf (w, x′)〉

• Under certain conditions (usually infinite width limit and NTK parame-
terization), the tangent kernel at initialization converges in probability to
a deterministic limit and keeps constant during training:

Θ̂(w;x, x′)→ Θ∞(x, x′)

• Infinite-width NN trained by gradient descent with mean square loss ⇔
kernel regression with NTK [2, 1]

• Wide neural networks are linear [3]:

f (wt, x) = f (w0, x) + 〈∇wf (w0, x), wt − w0〉 + O(m−
1
2)

where m is the width of NN.

• Constant tangent kernel ⇔ Linear model. Small Hessian norm ⇒ small
change of tangent kernel [4].

Motivations:
NTK helps us understand the optimization and generalization of NN through
the perspective of kernel methods. However,

• The equivalence is only known for ridge regression (regression model).
Limited insights to understand classification problems.

• Existing theory cannot handle the case of regularization.

Key Question: Can we establish the equivalence between NN
and other kernel machines?

Contributions:
1. Equivalence between NN and SVM

2. Equivalence between NN and a family of `2 regularized KMs

3. Finite-width NN trained by `2 regularized loss is approximately a kernel
machine

4. Applications: (a) Computing non-vacuous generalization bound of NN via
the corresponding KM; (b) Robustness certificate for over-parameterized
NN; (c) `2 regularized KMs (from equivalent infinite-width NN) are more
robust than previous kernel regression

Definitions

Soft Margin SVM. Given labeled samples {(xi, yi)}ni=1 with yi ∈ {−1,+1},
the hyperplane β∗ that solves the below optimization problem realizes the
soft margin classifier with geometric margin γ = 2/‖β∗‖.

min
β,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi, s.t. yi〈β,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, i ∈ [n],

Equivalently,

min
β

1

2
‖β‖2 + C

n∑
i=1

max(0, 1− yi〈β,Φ(xi)〉).

Denote as L(β), which is strongly convex in β. This can be solved by sub-
gradient decent.
Neural Network. ∀l ∈ [L],

α(0)(w, x) = x, α(l)(w, x) = φl(w
(l), α(l−1)), f (w, x) =

1
√
mL
〈w(L+1), α(L)(w, x)〉,

where each vector-valued function φl(w
(l), ·) : Rml−1 → Rml, with parameter

w(l) ∈ Rpl, is considered as a layer of the network.
Soft Margin Neural Network. Given samples {(xi, yi)}ni=1, yi ∈ {−1,+1},
the neural network w∗ that solves the following two equivalent optimization
problems

min
w,ξ

1

2
‖W (L+1)‖2 + C

n∑
i=1

ξi, s.t. yif (w, xi) ≥ 1− ξi, ξi ≥ 0, i ∈ [n],

min
w

1

2
‖W (L+1)‖2 + C

n∑
i=1

max(0, 1− yif (w, xi)), (1)

realizes the soft margin classifier with geometric margin γ = 2/‖W (L+1)
∗ ‖.

Denote Eq. (1) as L(w) and call it soft margin loss.

Equivalence between NN and SVM

Theorem 1 (Continuous Dynamics and Convergence Rate of SVM). Con-
sider training soft margin SVM by subgradient descent with infinite
small learning rate (gradient flow): dβt

dt = −∇βL(βt), the model gt(x)
follows the below evolution:

dgt(x)

dt
= −gt(x) + C

n∑
i=1

1(yigt(xi) < 1)yiK(x, xi),

and has a linear convergence rate:

L(βt)− L(β∗) ≤ e−2t (L(β0)− L(β∗)) .

Theorem 2 (Continuous Dynamics and Convergence Rate of NN). Suppose
an NN f (w, x), with f a differentiable function of w, is learned from a
training set {(xi, yi)}ni=1 by subgradient descent with L(w) and gradient
flow. Then the network has the following dynamics:

dft(x)

dt
= −ft(x) + C

n∑
i=1

1(yift(xi) < 1)yiΘ̂(wt;x, xi).

Let Θ̂(wt) ∈ Rn×n be the tangent kernel evaluated on the training set and

λmin

(
Θ̂(wt)

)
be its minimum eigenvalue. Assume λmin

(
Θ̂(wt)

)
≥ 2

C ,

then NN has at least a linear convergence rate, same as SVM:

L(wt)− L(w∗) ≤ e−2t (L(w0)− L(w∗)) .

Theorem 3 (Equivalence between NN and SVM). As the minimum width
of the NN, m = minl∈[L]ml, goes to infinity, the tangent kernel tends to

be constant, Θ̂(wt;x, xi) → Θ̂(w0;x, xi). Assume g0(x) = f0(x). Then
the infinitely wide NN trained by subgradient descent with soft margin
loss has the same dynamics as SVM with Θ̂(w0;x, xi) trained by subgra-
dient descent:

dft(x)

dt
= −ft(x) + C

n∑
i=1

1(yift(xi) < 1)yiΘ̂(w0;x, xi).

And thus such NN and SVM converge to the same solution.

Equivalence between NN and `2 regularized

KMs

Suppose the loss function for the KM and NN are

L(β) =
λ

2
‖β‖2 +

n∑
i=1

l(g(β, xi), yi), L(w) =
λ

2
‖W (L+1)‖2 +

n∑
i=1

l(f (w, xi), yi).

(2)

Theorem 4 (Bounds on the difference between NN and KMs). Assume
g0(x) = f0(x),∀x and K(x, xi) = Θ̂(w0;x, xi)

1. Suppose the SVM and
NN are trained with losses (2) and gradient flow. Suppose l is ρ-lipschitz
and βl-smooth for the first argument (i.e. the model output). Given any
wT ∈ B(w0;R) := {w : ‖w−w0‖ ≤ R} for some fixed R > 0, for training
data X ∈ Rd×n and a test point x ∈ Rd, with high probability over the
initialization,

‖fT (X)− gT (X)‖ = O(
eβl‖Θ̂(w0)‖R3L+1ρn

3
2 lnm

λ
√
m

),

‖fT (x)− gT (x)‖ = O(
eβl‖Θ̂(w0;X,x)‖R3L+1ρn lnm

λ
√
m

).

where fT (X), gT (X) ∈ Rn are the outputs of the training data and
Θ̂(w0;X, x) ∈ Rn is the tangent kernel evaluated between training data
and test point.

λ Loss l(z, yi) Kernel machine

λ = 0 ([2]) (yi − z)2 Kernel regression

λ→ 0 (ours) max(0, 1− yiz) Hard margin SVM

λ > 0 (ours)

max(0, 1− yiz) (1-norm) soft margin SVM
max(0, 1− yiz)2 2-norm soft margin SVM
max(0, |yi − z| − ε) Support vector regression
(yi − z)2 Kernel ridge regression (KRR)
log(1 + e−yiz) Logistic regression with `2 regularization

Finite-width NN trained by `2 regularized

loss

Theorem 5. Suppose an NN f (w, x), is learned from a training
set {(xi, yi)}ni=1 by (sub)gradient descent with loss function (2) and
gradient flow. Assume sign(l′(yi, ft(xi))) = sign(l′(yi, f0(xi))),∀t ∈
[0, T ]. Then at some time T > 0,

fT (x) =

n∑
i=1

aiK(x, xi) + b,

K(x, xi) = e−λT
∫ T

0

|l′(ft(xi), yi)|Θ̂(wt;x, xi)e
λt dt,

and ai = −sign(l′(f0(xi), yi)), b = e−λTf0(x).

Robustness certificate for

over-parameterized NN

Theorem 6. Consider the `∞ perturbation, for x ∈ B∞(x0, δ) =
{x ∈ Rd : ‖x−x0‖∞ ≤ δ}, we can bound Θ(x, x′) into some interval
[ΘL(x, x′),ΘU(x, x′)]. Suppose g(x) =

∑n
i=1αiΘ(x, xi), where αi are

known after solving the KM problems (e.g. SVM and KRR). Then
we can lower bound g(x) as follows.

g(x) ≥
n∑

i=1,αi>0

αiΘ
L(x, xi) +

n∑
i=1,αi<0

αiΘ
U(x, xi).

Robustness certificate δ (mean ± std) ×10−3

Model Width 100 test Full test

NN 103 7.4485 ± 2.5667 7.2708 ± 2.1427
NN 104 2.9861 ± 1.0730 2.9367 ± 0.89807
NN 105 0.99098 ± 0.35775 0.97410 ± 0.29997
NN 106 0.31539 ± 0.11380 0.30997 ± 0.095467

SVM ∞ 8.0541 ± 2.5827 7.9733 ± 2.1396

Model λ Test acc. Robustness cert. Cert. Improv.

λ = 0 ([2]) KRR 0 99.95% 3.30202×10−5 -

λ > 0 (ours)

KRR 0.001 99.95% 3.756122×10−5 1.14X
KRR 0.01 99.95% 6.505500×10−5 1.97X
KRR 0.1 99.95% 2.229960×10−4 6.75X
KRR 1 99.95% 0.001005 30.43X
KRR 10 99.91% 0.005181 156.90X
KRR 100 99.86% 0.020456 619.50X
KRR 1000 99.76% 0.026088 790.06X
SVM 0.032 99.95% 0.008054 243.91X
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