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Introduction, Motivation and Contributions

Introduction:
e Neural Tangent Kernel (NTK) [2]:

O(w;z,2") = (Vo f(w,2), Vo fw,2))

e Under certain conditions (usually infinite width limit and NTK parame-
terization), the tangent kernel at initialization converges in probability to
a deterministic limit and keeps constant during training:

O(w; z, ') = On(x, 2)
e Infinite-width NN trained by gradient descent with mean square loss <
kernel regression with NTK (2, 1
e Wide neural networks are linear [3]:
f(wr, @) = flwo, ) + (Vo f (wo, ), wp — wo) + O(m™?)
where m is the width of NN.

e Constant tangent kernel < Linear model. Small Hessian norm =- small
change of tangent kernel [4].
Motivations:
NTK helps us understand the optimization and generalization of NN through
the perspective of kernel methods. However,

e The equivalence is only known for ridge regression (regression model).
Limited insights to understand classification problems.

e [ixisting theory cannot handle the case of regularization.

Key Question: Can we establish the equivalence between NN
and other kernel machines?”

Contributions:
1. Equivalence between NN and SVM

2. Equivalence between NN and a family of £5 regularized KMs

3. Finite-width NN trained by ¢ regularized loss is approximately a kernel
machine

4. Applications: (a) Computing non-vacuous generalization bound of NN via
the corresponding KM; (b) Robustness certificate for over-parameterized
NN; (¢) ¢5 regularized KMs (from equivalent infinite-width NN) are more
robust than previous kernel regression

Soft Margin SVM. Given labeled samples {(x;, y;) }, with y; € {—1,+1},
the hyperplane 5* that solves the below optimization problem realizes the
soft margin classifier with geometric margin v = 2/||8%||.

1 E .
’ i=1
Equivalently,

1 n
min S8 + €Y7 max(0, 1 = gi(8, b))
1=1

Denote as L(), which is strongly convex in . This can be solved by sub-

oradient decent.
Neural Network. VI € [L],

1
Oz(o>(w,x) =z Oz<l>(w,x) _ ¢g(w<l>, a(z—m)’ flw, z) =

NG

where each vector-valued function ¢;(w”,-) : R™-1 — R™ with parameter
w!) € R is considered as a layer of the network.

Soft Margin Neural Network. Given samples {(x;, y;) }y, v € {—1,+1},
the neural network w* that solves the following two equivalent optimization
problems

1 n
“ i=1

1 n
min 5[V + O;maxw, L= yif (w, z:)), (1)

realizes the soft margin classifier with geometric margin v = 2/ HW*(LH)H.

Denote Eq. (1) as L(w) and call it soft margin loss.

(W, o P(w, ),

Equivalence between NN and SVM

Theorem 1 (Continuous Dynamics and Convergence Rate of SVM). Con-
sider training soft margin SVM by subgradient descent with infinite
small learning rate (gradient flow): %—5; = —V3L(f3;), the model gi(x)
follows the below evolution:

d n
W) — o) + O 1wl < Vi ),
i=1
and has a linear convergence rate:
L(8;) — L(8") < e * (L(Bo) — L(5")).

Theorem 2 (Continuous Dynamics and Convergence Rate of NN). Suppose
an NN f(w,z), with f a differentiable function of w, is learned from a
training set {(x;, y;)}, by subgradient descent with L(w) and gradient
flow. Then the network has the following dynamics:

G —filx)+C Z 1y fi(w:) < DyiO(wy; z, ;).

dt

Let é(wt) c R"*" be the tangent kernel evaluated on the training set and

Amin (@(wt)) be its minimum eigenvalue. Assume A\yin (@(wt)) > 2,

then NN has at least a linear convergence rate, same as SVM:

L(wt) — L(w") < e (L(wy) — L(w")) .
Theorem 3 (Equivalence between NN and SVM). As the minimum width
of the NN, m = minrjmy, goes to infinity, the tangent kernel tends to
be constant, O(wy; x,x;) — O(wy, x,x;). Assume go(x) = fo(x). Then
the infinitely wide NN trained by subgradient descent with soft margin

loss has the same dynamics as SVM with @(wo; x,x;) trained by subgra-
dient descent:

And thus such NN and SVM converge to the same solution.

Equivalence between NN and /> regularized

KMs

Suppose the loss function for the KM and NN are

A - A -
L(B) = SNB8I° + ) Ug(B. i), i), L(w) = ZNWED2+ )y 1(f (w, i), ).
1=1

i=1

(2)
Theorem 4 (Bounds on the difference between NN and KMs). Assume
go(z) = folx),Ya and K(z,x;) = O(wy, x,x;) *. Suppose the SVM and
NN are trained with losses (2) and gradient flow. Supposel is p-lipschitz
and B;-smooth for the first argument (i.e. the model output). Given any
wr € B(wy, R) .= {w : [[w—wy|| < R} for some fixed R > 0, for training
data X € R gnd a test point x € R?, with high probability over the

initialization,
5z\|é(wo>||R3L+1 %1
e pnzlnm
X)—gr(X)|| =0
o B116(wo X 2) | R3LA

|fr(z) = gr(@)l| = O we ]

where fr(X),gr(X) € R" are the outputs of the training data and
O(wy; X, x) € R" is the tangent kernel evaluated between training data
and test point.
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Loss (2, y;) Kernel machine

A=0(2) (yi—2)

Kernel regression

A — 0 (ours) max(0,1 — y;2) Hard margin SVM

1 —y;2) (1-norm) soft margin SVM
| —y;2)°  2-norm soft margin SVM
A > 0 (ours) max(0, |y; — 2| — €) Support vector regression
(y; — 2)* Kernel ridge regression (KRR)

log(1 4 e~ ¥#)

max (0,

—

max (0,

Logistic regression with ¢ regularization
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Finite-width NN trained by /> regularized

loss

Theorem 5. Suppose an NN f(w,x), is learned from a training
set {(x;,y;) }iy by (sub)gradient descent with loss function (2) and
gradient flow. Assume sign(l'(y;, fi(z;))) = sign(l'(y;, fo(x;))), Vt €
0,T]. Then at some time T > 0,

n

fr(x) = Z a; K(x,z;) + b,

i=1
T
Koo = [0, )l OCw o, m)e dt.
0

and a; = —sign(l'(fo(z:),y:)), b = e M fo(x).
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Robustness certificate for

over-parameterized NN

Theorem 6. Consider the (. perturbation, for x € Bu(xg,0) =
{x € RY: ||lx—20||0 < 0}, we can bound O(x, 2') into some interval
% (x,2"),0%(x,2")]. Suppose g(x) = " a;0(x, z;), where a; are
known after solving the KM problems (e.q. SVM and KRR). Then
we can lower bound g(x) as follows.

g(x) > Z 0, O (x, ;) + Z 0, 0OY (x, x;).

1=1,a;>0 1=1,0,;<0

Robustness certificate ¢ (mean = std) x107°
Model Width 100 test Full test

NN  10°  7.4485 4+ 2.5667 7.2708 4+ 2.1427
NN  10* 29861 + 1.0730  2.9367 + 0.89807
NN  10°  0.99098 + 0.35775 0.97410 4 0.29997
NN  10°  0.31539 4 0.11380 0.30997 + 0.095467

SVM oo 8.0041 = 2.5827  7.9733 = 2.1396

Model A Test acc. Robustness cert. Cert. Improv.

A=0(]2) KRR 0 99.95%  3.30202x107° -
KRR 0.001 99.95% 3.756122x107° 1.14X
KRR 0.01 99.95% 6.505500x10™> 1.97X
KRR 0.1  99.95% 2.229960x10~* 6.75X

A > 0 (ours) ;{33 1 99.95%  0.001005 30.43X
KRR 10  99.91% 0.005181 156.90X
KRR 100 99.86% 0.020456 619.50X
KRR 1000 99.76%  0.026088 790.06X
SVM  0.032 99.95%  0.008054 243.91X
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