On the Equivalence between Neural Network and Support Vector Machine

Yilan Chen[†] · Wei Huang[‡] · Lam M. Nguyen[§] · Tsui-Wei Weng[†]

[†] University of California San Diego, [‡] University of Technology Sydney, [§] IBM Research, Thomas J. Watson Research Center

Introduction, Motivation and Contributions

Introduction:

• Neural Tangent Kernel (NTK) [2]:

$$\hat{\Theta}(w; x, x') = \langle \nabla_w f(w, x), \nabla_w f(w, x') \rangle$$

• Under certain conditions (usually infinite width limit and NTK parameterization), the tangent kernel at initialization converges in probability to a deterministic limit and keeps constant during training:

$$\hat{\Theta}(w; x, x') \to \Theta_{\infty}(x, x')$$

- Infinite-width NN trained by gradient descent with mean square loss \Leftrightarrow kernel regression with NTK [2, 1]
- Wide neural networks are linear [3]:

$$f(w_t, x) = f(w_0, x) + \langle \nabla_w f(w_0, x), w_t - w_0 \rangle + O(m^{-\frac{1}{2}})$$

where m is the width of NN.

• Constant tangent kernel \Leftrightarrow Linear model. Small Hessian norm \Rightarrow small change of tangent kernel [4].

Motivations:

NTK helps us understand the optimization and generalization of NN through the perspective of kernel methods. However,

- The equivalence is only known for ridge regression (regression model). Limited insights to understand classification problems.
- Existing theory cannot handle the case of regularization.

Key Question: Can we establish the equivalence between NN and other kernel machines?

Contributions:

- 1. Equivalence between NN and SVM
- 2. Equivalence between NN and a family of ℓ_2 regularized KMs
- 3. Finite-width NN trained by ℓ_2 regularized loss is approximately a kernel machine
- 4. Applications: (a) Computing non-vacuous generalization bound of NN via the corresponding KM; (b) Robustness certificate for over-parameterized NN; (c) ℓ_2 regularized KMs (from equivalent infinite-width NN) are more robust than previous kernel regression

Definitions

Soft Margin SVM. Given labeled samples $\{(x_i, y_i)\}_{i=1}^n$ with $y_i \in \{-1, +1\}$, the hyperplane β^* that solves the below optimization problem realizes the soft margin classifier with geometric margin $\gamma = 2/\|\beta^*\|$.

$$\min_{\beta,\xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i, \quad s.t. \ y_i \langle \beta, \Phi(x_i) \rangle \ge 1 - \xi_i, \ \xi_i \ge 0, \ i \in [n],$$

Equivalently,

$$\min_{\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i \langle \beta, \Phi(x_i) \rangle).$$

Denote as $L(\beta)$, which is strongly convex in β . This can be solved by subgradient decent.

Neural Network. $\forall l \in [L],$

$$\alpha^{(0)}(w,x) = x, \ \alpha^{(l)}(w,x) = \phi_l(w^{(l)},\alpha^{(l-1)}), \ f(w,x) = \frac{1}{\sqrt{m_L}} \langle w^{(L+1)},\alpha^{(L)}(w,x) \rangle,$$

where each vector-valued function $\phi_l(w^{(l)}, \cdot) : \mathbb{R}^{m_{l-1}} \to \mathbb{R}^{m_l}$, with parameter $w^{(l)} \in \mathbb{R}^{p_l}$, is considered as a layer of the network.

Soft Margin Neural Network. Given samples $\{(x_i, y_i)\}_{i=1}^n$, $y_i \in \{-1, +1\}$, the neural network w^* that solves the following two equivalent optimization problems

$$\min_{w,\xi} \frac{1}{2} \|W^{(L+1)}\|^2 + C \sum_{i=1}^n \xi_i, \quad s.t. \ y_i f(w, x_i) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i \in [n],$$

$$\min_{w} \frac{1}{2} \|W^{(L+1)}\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i f(w, x_i)), \tag{1}$$

realizes the soft margin classifier with geometric margin $\gamma = 2/\|W_*^{(L+1)}\|$. Denote Eq. (1) as L(w) and call it soft margin loss.

Equivalence between NN and SVM

Theorem 1 (Continuous Dynamics and Convergence Rate of SVM). Consider training soft margin SVM by subgradient descent with infinite small learning rate (gradient flow): $\frac{d\beta_t}{dt} = -\nabla_{\beta}L(\beta_t)$, the model $g_t(x)$ follows the below evolution:

$$\frac{dg_t(x)}{dt} = -g_t(x) + C \sum_{i=1}^{n} \mathbb{1}(y_i g_t(x_i) < 1) y_i K(x, x_i),$$

and has a linear convergence rate:

$$L(\beta_t) - L(\beta^*) \le e^{-2t} (L(\beta_0) - L(\beta^*)).$$

Theorem 2 (Continuous Dynamics and Convergence Rate of NN). Suppose an NN f(w, x), with f a differentiable function of w, is learned from a training set $\{(x_i, y_i)\}_{i=1}^n$ by subgradient descent with L(w) and gradient flow. Then the network has the following dynamics:

$$\frac{df_t(x)}{dt} = -f_t(x) + C \sum_{i=1}^n \mathbb{1}(y_i f_t(x_i) < 1) y_i \hat{\Theta}(w_t; x, x_i).$$

Let $\hat{\Theta}(w_t) \in \mathbb{R}^{n \times n}$ be the tangent kernel evaluated on the training set and $\lambda_{min} \left(\hat{\Theta}(w_t) \right)$ be its minimum eigenvalue. Assume $\lambda_{min} \left(\hat{\Theta}(w_t) \right) \geq \frac{2}{C}$, then NN has at least a linear convergence rate, same as SVM:

$$L(w_t) - L(w^*) \le e^{-2t} \left(L(w_0) - L(w^*) \right).$$

Theorem 3 (Equivalence between NN and SVM). As the minimum width of the NN, $m = \min_{l \in [L]} m_l$, goes to infinity, the tangent kernel tends to be constant, $\hat{\Theta}(w_t; x, x_i) \to \hat{\Theta}(w_0; x, x_i)$. Assume $g_0(x) = f_0(x)$. Then the infinitely wide NN trained by subgradient descent with soft margin loss has the same dynamics as SVM with $\hat{\Theta}(w_0; x, x_i)$ trained by subgradient descent:

$$\frac{df_t(x)}{dt} = -f_t(x) + C \sum_{i=1}^n \mathbb{1}(y_i f_t(x_i) < 1) y_i \hat{\Theta}(w_0; x, x_i).$$

And thus such NN and SVM converge to the same solution.

Equivalence between NN and ℓ_2 regularized KMs

Suppose the loss function for the KM and NN are

$$L(\beta) = \frac{\lambda}{2} \|\beta\|^2 + \sum_{i=1}^{n} l(g(\beta, x_i), y_i), \ L(w) = \frac{\lambda}{2} \|W^{(L+1)}\|^2 + \sum_{i=1}^{n} l(f(w, x_i), y_i).$$
(2)

Theorem 4 (Bounds on the difference between NN and KMs). Assume $g_0(x) = f_0(x), \forall x \text{ and } K(x, x_i) = \hat{\Theta}(w_0; x, x_i)^{-1}$. Suppose the SVM and NN are trained with losses (2) and gradient flow. Suppose l is ρ -lipschitz and β_l -smooth for the first argument (i.e. the model output). Given any $w_T \in B(w_0; R) := \{w : ||w-w_0|| \leq R\}$ for some fixed R > 0, for training data $X \in \mathbb{R}^{d \times n}$ and a test point $x \in \mathbb{R}^d$, with high probability over the initialization,

$$||f_T(X) - g_T(X)|| = O(\frac{e^{\beta_l ||\Theta(w_0)||} R^{3L+1} \rho n^{\frac{3}{2}} \ln m}{\lambda \sqrt{m}}),$$

$$||f_T(X) - g_T(X)|| = O(\frac{e^{\beta_l ||\hat{\Theta}(w_0; X, X)||} R^{3L+1} \rho n \ln m}{\lambda \sqrt{m}}).$$

where $f_T(X), g_T(X) \in \mathbb{R}^n$ are the outputs of the training data and $\hat{\Theta}(w_0; X, x) \in \mathbb{R}^n$ is the tangent kernel evaluated between training data and test point.

λ	Loss $l(z, y_i)$	Kernel machine
$\lambda = 0 ([2])$	$(y_i - z)^2$	Kernel regression
$\lambda \to 0 \text{ (ours)}$	$\max(0, 1 - y_i z)$	Hard margin SVM
	$\max(0, 1 - y_i z) \\ \max(0, 1 - y_i z)^2$	(1-norm) soft margin SVM 2-norm soft margin SVM
$\lambda > 0 \text{ (ours)}$	$\max(0, y_i - z - \epsilon)$ $(y_i - z)^2$ $\log(1 + e^{-y_i z})$	Support vector regression Kernel ridge regression (KRR) Logistic regression with ℓ_2 regularization

Finite-width NN trained by ℓ_2 regularized loss

Theorem 5. Suppose an NN f(w, x), is learned from a training set $\{(x_i, y_i)\}_{i=1}^n$ by (sub)gradient descent with loss function (2) and gradient flow. Assume $sign(l'(y_i, f_t(x_i))) = sign(l'(y_i, f_0(x_i))), \forall t \in [0, T]$. Then at some time T > 0,

$$f_T(x) = \sum_{i=1}^n a_i K(x, x_i) + b,$$

$$K(x, x_i) = e^{-\lambda T} \int_0^T |l'(f_t(x_i), y_i)| \hat{\Theta}(w_t; x, x_i) e^{\lambda t} dt,$$

and $a_i = -sign(l'(f_0(x_i), y_i)), b = e^{-\lambda T} f_0(x).$

Robustness certificate for over-parameterized NN

Theorem 6. Consider the ℓ_{∞} perturbation, for $x \in B_{\infty}(x_0, \delta) = \{x \in \mathbb{R}^d : ||x-x_0||_{\infty} \leq \delta\}$, we can bound $\Theta(x, x')$ into some interval $[\Theta^L(x, x'), \Theta^U(x, x')]$. Suppose $g(x) = \sum_{i=1}^n \alpha_i \Theta(x, x_i)$, where α_i are known after solving the KM problems (e.g. SVM and KRR). Then we can lower bound g(x) as follows.

$$g(x) \ge \sum_{i=1,\alpha_i>0}^{n} \alpha_i \Theta^L(x, x_i) + \sum_{i=1,\alpha_i<0}^{n} \alpha_i \Theta^U(x, x_i).$$

		Robustness certificate δ (mean \pm std) $\times 10^{-3}$			
Model	Width	100 test	Full test		
NN	10^{3}	7.4485 ± 2.5667	7.2708 ± 2.1427		
NN	10^{4}	2.9861 ± 1.0730	2.9367 ± 0.89807		
NN	10^{5}	0.99098 ± 0.35775	0.97410 ± 0.29997		
NN	10^{6}	0.31539 ± 0.11380	0.30997 ± 0.095467		
SVM	∞	8.0541 ± 2.5827	7.9733 ± 2.1396		

		Model	λ	Test acc.	Robustness cert.	Cert. Improv.
	$\lambda = 0 ([2])$	KRR	0	99.95%	3.30202×10^{-5}	_
	$\lambda > 0 \text{ (ours)}$	KRR	0.001	99.95%	3.756122×10^{-5}	1.14X
		KRR	0.01	99.95%	6.505500×10^{-5}	1.97X
		KRR	0.1	99.95%	2.229960×10^{-4}	6.75X
		KRR	1	99.95%	0.001005	30.43X
		KRR	10	99.91%	0.005181	156.90X
		KRR	100	99.86%	0.020456	619.50X
		KRR	1000	99.76%	0.026088	790.06X
		SVM	0.032	99.95%	0.008054	243.91X

References

[1] Sanjeev Arora et al. "On exact computation with an infinitely wide neural net". In: Advances in Neural Information Processing Systems. 2019, pp. 8141–8150.

[2] Arthur Jacot, Franck Gabriel, and Clément Hongler. "Neural tangent kernel: Convergence and generalization in neural networks". In: *Advances in neural information processing systems*. 2018, pp. 8571–8580.

[3] Jaehoon Lee et al. "Wide neural networks of any depth evolve as linear models under gradient descent". In: Advances in neural information processing systems. 2019, pp. 8572–8583.

[4] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. "On the linearity of large non-linear models: when and why the tangent kernel is constant". In: Advances in Neural Information Processing Systems 33 (2020).