Analyzing Generalization of Neural Networks through Loss Path Kernels  UCSanD

Yilan Chen’, Wei Huang?, Hao Wang?, Charlotte Loh?®, Akash Srivastavas, Lam M. Nguyen#, and Tsui-Wei Weng’
TUCSD, ?RIEKN AIP, SMIT-IBM Watson Al Lab, “IBM Research

Kernel machine and generalization theory of
neural networks (NNs)

Kernel: K(x,x") = (®(x), P(x")), ®: X - H maps the data to a feature space.
Kernel machine (KM): linear function in the feature space:

gx) ={(B,®(x)) +b =L, a;K(x,x;) +b, where f = ¥, a;P(x;)
Neural Tangent Kernel (NTK) (Jacot et al., 2018):

O(w; x,x") = (V,, f(w, %), V,, f (W, x"))

Infinite-width NN trained by gradient descent with square loss < kernel
regression with NTK [Jacot et al., 2018; Arora et al., 2019]
Infinite-width NN trained with ¢, regularized loss < ¢, regularized KMs with NTK,
e.g. SVM [Chen et al., 2021]

Generalization gap:
GAP = B, [6w,2)] — B £(w,2) <7

« VC dimension

 Norm-based bounds

 NTK-based bounds for ultra-wide NNs

Motivations:

1. Can we establish a connection or equivalence between general NNs (vs ultra-
wide NNs) and Kernel machines (KMs)?

2. Can we establish tight (vs vacuous) generalization bounds for general NNs
(vs ultra-wide NNs)?

Contribution 1: Equivalence between NN and KM

Loss Path Kernel (LPK): w(T)

Ke(z,2;8) = | (V,¢(w,x), ) w(t) = VyL(w(t),x)

w(0)
With gradient flow (gradient descent with infinitesimal step size):
w(t+ 1) —w(t) n—0 dw(t
= -V, Ls(w(t)) — (t)

N dt
n = —=VyLs(w(t))

1
t(wr,z) = Z —EKT(Z,ZL-;S) + £(wy, 2)

i=1

Stochastic gradient flow:

T-1
1
t(wrp,z) = Z 2_65 —EKT(Z, z;; S)'+ f(wy, 2)
t=1 't

Contribution 2: Generalization bound for NN
trained by gradient flow

Different training set induces distinct LPK. Set of LPKs with constrained RKHS
norm: K = {KT(-,-;S’):S’ € supp(u@’"),:—ZZiJ KT(zi’, Z]-’;S’) < B?}
Set of NNs trained to time T

n

1
Gr = {Q(Z) = z _EK(Z' z;;S) +€(wy, 2); K(-,; S") € Ky

=1

. different set of samples
: set of NNs at time ¢t

whole set of NNsS

GAP < 2 min(Ul, Uz)

- U,=

n
SUPKex Z K(z;,z;S") +

\ l—1:: _ianEIKTK(Zil Z],S,)]

maximum magnitude of the loss gradient in
K+ evaluated with S throughout the training
trajectory.

Compare with the bound of KM with a fixed kernel K: GAP < g\/Z}Ll K(x;, x; ).
When || = 1, our bound recovers KM's bound.

n
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If the variation of the loss dynamics of gradient flow with different training data
Is small, U, will be small.

Compare with previous NTK-based bounds: Much more general results!

1
A(Zi, zj) = 5 [supKegCTK(zi, Zj; S’)

Arora et al. Cao & Gu Ours
Bound \/ 2YT(H:) R O(L -/ W) Theorem 3, Theorem 5
Model Ultra-wide two-layer FCNN  Ultra-wide FCNN General continuously differentiable NN
Data i.i.d. data with ||z|| =1 i.id. datawith || =1 iid. data
Loss Square loss Logistic loss Continuously differentiable & bounded loss
During training No No Yes
Multi-outputs No No Yes
Training algorithm GD SGD (Stochastic) gradient flow
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Experiments

a. Verify the equivalence:
(a) Logistic loss for training samples
—— NNGF 0.0015

0s (b) Difference of logistic loss
| oy — NN GF - KM
N

0.7 ---- NN GD - KM
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* NN trained by gradient flow (GF) overlaps with the KM
* NN trained by gradient descent (GD) is also close with the KM

b. Generalization bound:

(c) Rademacher complexity bound

1 i i
0.10 —— Generalization gap

A5G, 20 & Our bound: ~0.03
— R%(G), 50 & VC dimension bound: 55957.3
— R¢lon, 100 8 Norm-based bound: 140.7
NTK-based bound (ultra-wide NN): 1.44
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Tight bound!
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Contribution 3: Neural architecture search

Use the bound to estimate the test loss and design minimum-training NAS
algorithms: Gene(w,S) = Lg(W) + 2Ugg4q4
Usga- simplified from the bound of stochastic gradient flow

CIFAR-10 CIFAR-100

Algorithm Accuracy Best | Accuracy Best
Baselines
TENAS [13] 93.08+0.15 93.25 | 70.37+2.40 73.16
RS + LGA3 [39] 93.64 69.77
Ours
RS + Gene(w, S); | 93.68+0.12 93.84 | 72.02+1.43 73.15
RS + Gene(w, S), | 93.79+0.18 94.02 | 72.76+0.33 73.15
Optimal 94.37 73.51
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