
Analyzing Generalization of Neural Networks through Loss Path Kernels

Kernel machine and generalization theory of 
neural networks (NNs)

Kernel: 𝐾 𝑥, 𝑥! = Φ 𝑥 ,Φ 𝑥′ , Φ: 𝒳 → ℋ maps the data to a feature space.
Kernel machine (KM): linear function in the feature space:

𝑔 𝑥 = 𝛽,Φ 𝑥 + 𝑏 = ∑"#$% 𝑎"𝐾 𝑥, 𝑥" + b,   where 𝛽 = ∑"#$% 𝑎"Φ 𝑥"
Neural Tangent Kernel (NTK) (Jacot et al., 2018):

2Θ 𝑤; 𝑥, 𝑥! = ∇&𝑓 𝑤, 𝑥 , ∇&𝑓 𝑤, 𝑥!

Infinite-width NN trained by gradient descent with square loss ⇔ kernel 
regression with NTK [Jacot et al., 2018; Arora et al., 2019]
Infinite-width NN trained with ℓ' regularized loss ⇔ ℓ' regularized KMs with NTK, 
e.g. SVM [Chen et al., 2021]

Generalization gap:

𝐺𝐴𝑃 = 𝔼(∼* ℓ 𝑤, 𝑧 − $
%
∑"#$% ℓ 𝑤, 𝑧" ≤ ?

• VC dimension
• Norm-based bounds
• NTK-based bounds for ultra-wide NNs 
Motivations:
1. Can we establish a connection or equivalence between general NNs (vs ultra-

wide NNs) and Kernel machines (KMs)?
2. Can we establish tight (vs vacuous) generalization bounds for general NNs 

(vs ultra-wide NNs)?

Different training set induces distinct LPK. Set of LPKs with constrained RKHS 

norm: 𝒦+ = K+ ⋅,⋅; 𝑆! : 𝑆! ∈ supp(𝜇⨂% , $
%!
∑",. K+ 𝑧"′, 𝑧.!; 𝑆′ ≤ 𝐵'}

Set of NNs trained to time 𝑇:

Contribution 2: Generalization bound for NN 
trained by gradient flow

Contribution 1: Equivalence between NN and KM
Loss Path Kernel (LPK):

K+ 𝑧, 𝑧!; 𝑆 = N
/

+
∇&ℓ 𝑤, 𝑥 , ∇&ℓ 𝑤, 𝑥! 𝑑𝑡

With gradient flow (gradient descent with infinitesimal step size):

Contribution 3: Neural architecture search
Use the bound to estimate the test loss and design minimum-training NAS 
algorithms: Gene(𝑤, 𝑆) = 𝐿0 𝑤 + 2𝑈123
𝑈123: simplified from the bound of stochastic gradient flow
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maximum magnitude of the loss gradient in 
𝒦# evaluated with 𝑆 throughout the training 
trajectory.

range of variation 
of LPK in 𝒦#

Compare with the bound of KM with a fixed kernel 𝐾: 𝐺𝐴𝑃 ≤ 9
%

∑"#$% 𝐾 𝑥" , 𝑥" .
When |𝒦+| = 1, our bound recovers KM’s bound.

→ 𝑈'= inf
:;/

𝜖
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2 ln𝒩(𝒢+0 , 𝜖, $)
𝑛

If the variation of the loss dynamics of gradient flow with different training data 
is small, 𝑈' will be small.

• NN trained by gradient flow (GF) overlaps with the KM
• NN trained by gradient descent (GD) is also close with the KM

Experiments 

Our bound: ~0.03
VC dimension bound: 55957.3
Norm-based bound: 140.7
NTK-based bound (ultra-wide NN): 1.44

Tight bound!
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Sum of KMs with LPK

Stochastic gradient flow:

a. Verify the equivalence:

Compare with previous NTK-based bounds: Much more general results!

b. Generalization bound:


