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• Kernel: 𝐾 𝑥, 𝑥! = Φ 𝑥 ,Φ 𝑥′ , Φ: 	𝒳 → ℋ maps the data to a (potentially infinite 
dimensional) feature space.

• Kernel machine (KM): linear function in the feature space

• RKHS norm of 𝑔: 𝛽 = ∑"#$
% ∑&#$

% 𝑎"𝑎&𝐾 𝑥", 𝑥&

Kernel Machine

𝑔 𝑥 = 𝛽,Φ 𝑥 + 𝑏 = ∑"#$% 𝑎"𝐾 𝑥, 𝑥" + 𝑏,   where 𝛽 = 	∑"#$% 𝑎"Φ 𝑥"  

Φ 𝑥"
𝑔 𝑥 = 𝛽,Φ 𝑥

Φ 𝑥&
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• Neural Tangent Kernel (NTK) (Jacot et al., 2018):
 

   measures the similarity between data points 𝑥, 𝑥! by comparing their gradients

• Under certain conditions (e.g., infinite width limit and NTK initialization), NTK at 
initialization 𝑤' converges to a deterministic limit and keeps constant during training: 

Neural tangent kernel 

!Θ 𝑤; 	𝑥, 𝑥# = ∇$𝑓 𝑤, 𝑥 , ∇$𝑓 𝑤, 𝑥#
∇$𝑓 𝑤, 𝑥

∇$𝑓 𝑤, 𝑥′

𝑤

!Θ 𝑤%; 	𝑥, 𝑥# → Θ& 𝑥, 𝑥#

NTK at initialization Independent of 𝑤! 
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• Infinite-width neural network (NN) trained by gradient descent with mean square 
loss ⇔ kernel regression with NTK [Jacot et al., 2018; Arora et al., 2019]

 

• Wide NNs are linear in the parameter space [Lee et al., 2019]:

• Infinite-width NN trained with ℓ)	regularized loss ⇔ ℓ)	regularized KMs with NTK, 
e.g. SVM [Chen et al., 2021]

Neural tangent kernel 

𝑓 𝑤*, 𝑥 = 𝑓 𝑤', 𝑥 + ∇+𝑓 𝑤', 𝑥 , 𝑤* −𝑤' + 𝑂(
1
𝑚
) 𝑚: width of NN
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Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

kernel regression: linear regression in the feature space
 min

"!
∑#$%& 𝑤' − 𝑤(	, ∇"𝑓 𝑤(, 𝑥# 	− 𝑦# )



Neural tangent kernel 
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𝐿 𝛽 =
𝜆
2
𝛽 ) +@

"#$

%
ℓ(𝑔 𝛽, 𝑥" , 𝑦")

KM 𝑔 𝛽, 𝑥 = 𝛽, ∇+𝑓 𝑤', 𝑥  withequivalent

SVM: ℓ 𝑧, 𝑦 = max(0, 1 − 𝑧𝑦)	

Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

𝐿 𝑤 =
𝜆
2
𝑤 , )

+@
"#$

%
ℓ(𝑓 𝑤, 𝑥" , 𝑦")

Ultra-wide NN trained with

𝑤 * : last layer of NN



Suppose ℓ is Lipschitz and smooth,

𝑓 𝑥 − 𝑔(𝑥) ≤ 	 H𝑂( $
-) 

Neural tangent kernel 
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Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

Our prior work [Chen et al., 2021]:



Neural tangent kernel 

These equivalences are useful for analyzing NNs 
But only holds for infinite-width/ultra-wide NNs

Q1. Can we establish a connection or equivalence between general NNs 
(vs ultra-wide NNs) and KMs?

Φ 𝑥#

𝑓 𝑤, 𝑥… …

𝑚 → ∞

ℋ:Φ(𝑥) = ∇"𝑓 𝑤!, 𝑥 ℋ:Φ(𝑥) = ∇"𝑓 𝑤!, 𝑥

Φ 𝑥#

Φ 𝑥+

𝑓 𝑤, 𝑥

kernel regression ℓ#	regularized KMs

equivalent

Φ 𝑥+

[Jacot et al., 2018; Arora et al., 
2019; Lee et al., 2019]

[Chen et al., 2021]
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How do the neural networks (NN) generalize on test data?

generalization gap:

Generalization theory of neural networks  

𝐿,(𝑤): population loss 𝐿- 𝑤 : training loss

𝐺𝐴𝑃 = 𝔼7∼9 ℓ 𝑤, 𝑧 	− :
;
∑<=:; ℓ 𝑤, 𝑧 ≤	 ?

10

𝐺𝐴𝑃 ≤
𝒢
𝑛

𝒢: NN function class
𝑛: # of samples



1. VC dimension [Bartlett et al., 2019]

𝐺𝐴𝑃 ≤ 	𝑂( 𝐿 	#	>?	@ABA-C*CBD% log 𝑛 ) 

2. Norm-based bounds [Bartlett et al., 2017; …] 

𝐺𝐴𝑃 ≤ 	𝑂(
∏E#$
, 𝑊E

𝑛
)

• Other bounds:
• PAC-Bayes bounds (mainly focus on stochastic NNs)
• Information-theoretical approach (expected bound)

• Do not explain the generalization ability of 
overparameterized NNs. [Belkin et al., 2019]

• Vacuous: too large to be useful

Generalization theory: general NNs

𝐿: # of layers
𝑛: # of samples
𝑊.: weight of layer 𝑙 

Bartlett, et al.. Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks. JMLR 2019.
Bartlett, et al.. Spectrally-normalized margin bounds for neural networks. NeurIPS 2017.
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• Arora et al., 2019: for ultra-wide two-layer FCNN, 

•  Cao & Gu, 2019: for ultra-wide L-layer FCNN, 

Generalization theory: ultra-wide NNs

𝐺𝐴𝑃 ≤ H𝑂(𝐿 ⋅
2	𝐲F Θ G$𝐲	

𝑛
)

These bounds only hold for 
ultra-wide NNs

𝐺𝐴𝑃 ≤
2	𝐲F 𝐇H G$𝐲	

𝑛
𝐇/: NTK of the first layer

Q2. Can we establish tight (vs vacuous) generalization bounds for general NNs 
(vs ultra-wide NNs)?
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1. Can we establish a connection or equivalence between general NNs (vs ultra-
wide NNs) and Kernel machines? It can have many benefits:
1. New understanding of NN trained with SGD
2. Generalization bound for NNs from the perspective of kernel
3. Analyze NN architectures from this equivalence
4. Improve kernel method from the NN viewpoint

2. Can we establish tight (vs vacuous) generalization bounds for general NNs (vs 
ultra-wide NNs)?

Motivation of this work

Yes!
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Neural tangent kernel (NTK):

Loss Tangent Kernel (LTK):

Loss Path Kernel (LPK):

Loss Path Kernel

8K 𝑤; 𝑧, 𝑧# = ∇$ℓ 𝑤, 𝑧 , ∇$ℓ 𝑤, 𝑧#

!Θ 𝑤; 	𝑥, 𝑥# = ∇$𝑓 𝑤, 𝑥 , ∇$𝑓 𝑤, 𝑥#

KC 𝑧, 𝑧#; 𝑆 = ;
%

C
8K 𝑤(𝑡); 𝑧, 𝑧# 	𝑑𝑡

	 = ;
%

C
∇$ℓ 𝑤, 𝑧 , ∇$ℓ 𝑤, 𝑧# 𝑑𝑡

∇$ℓ 𝑤, 𝑧

∇$ℓ 𝑤, 𝑧′

𝑤

15

𝑧 = (𝑥, 𝑦)

∇$ℓ 𝑤(𝑡), 𝑧

∇$ℓ 𝑤(𝑡), 𝑧′

𝑤(𝑡)

𝑤(𝑇)

𝑤(0)

path



We can derive equivalence: 

Equivalence between neural network and kernel machine

With gradient flow (gradient descent with infinitesimal step size):

𝑑𝑤(𝑡)
𝑑𝑡

= −∇+𝐿I(𝑤(𝑡))	
𝑤 𝑡 + 1 − 𝑤 𝑡

𝜂
= −∇+𝐿I(𝑤(𝑡))	

𝜂 → 0

ℓ 𝑤C , 𝑧 = 	C
<=:

;

−
1
𝑛
KC 𝑧, 𝑧<; 𝑆 + ℓ(𝑤%, 𝑧)

Kernel machine 
with LPK

Loss function 
at initialization

Loss function 
at time 𝑇

Very general equivalence!
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Equivalence between neural network and kernel machine

Proof:

17

By chain rule

Integrate from 0 to 𝑇:

ℓ 𝑤L, 𝑧 − ℓ 𝑤', 𝑧 = −
1
𝑛@
"#$

%

Z
'

L
∇+ℓ 𝑤*, 𝑧 , ∇+ℓ 𝑤*, 𝑧" 𝑑𝑡 = 	@

"#$

%

−
1
𝑛KL 𝑧, 𝑧"; 𝑆

= ∇+ℓ 𝑤*, 𝑧 , −∇+𝐿I(𝑤*)

= ∇+ℓ 𝑤*, 𝑧 , −
1
𝑛@
"#$

%

∇+ℓ 𝑤*, 𝑧"

= −
1
𝑛
@
"#$

%

∇+ℓ 𝑤*, 𝑧 , ∇+ℓ 𝑤*, 𝑧"

𝑑ℓ(𝑤*, 𝑧)
𝑑𝑡

= ∇+ℓ 𝑤*, 𝑧 ,
𝑑𝑤*
𝑑𝑡

Gradient flow: M+!M* = −∇+𝐿I(𝑤*)

Definition of 𝐿I(𝑤*)

Rearrange



Equivalence: 

Equivalence between neural network and kernel machine

ℓ 𝑤C , 𝑧 = 	C
E=:

CF:

C
<∈H!

−
1
𝑚
KC 𝑧, 𝑧<; 𝑆 + ℓ(𝑤%, 𝑧)

Sum of KMs with LPK

Stochastic gradient flow (SGD with infinitesimal step size):

𝑑𝑤(𝑡)
𝑑𝑡

= −∇+𝐿I!(𝑤(𝑡))	
𝑤 𝑡 + 1 − 𝑤 𝑡

𝜂
= −∇+𝐿I!(𝑤(𝑡))	

𝜂 → 0

𝑆* ⊆ {1,… , 𝑛} is the indices of batch data, 𝑚 = 𝑆* : batch size 
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Equivalence between neural network and kernel machine
19

NN width
finite Ultra-wide infinite

Mean square 
loss

Other standard  
loss

ℓ# regularized 
loss

Our prior work 
[Chen et al., 2021]

NTK [Jacot et al., 2018; 
Arora et al., 2019; Lee et al., 

2019]This work

Compare with previous equivalence results:



Equivalence between neural network and kernel machine
Verify the equivalence: two-layer NN

• NN trained by gradient flow (GF) exactly equal to the KM
• NN trained by gradient descent (GD) is also close with the KM

20

Loss for different 
samples

ℓ 𝑤$ , 𝑧%

approximate equivalence

ℓ 𝑤$ , 𝑧#

exact equivalence

ℓ 𝑤& , 𝑧 − (P
𝒊(𝟏

𝒏

−
𝟏
𝒏𝐊𝑻 𝒛, 𝒛𝒊; 𝑺 + ℓ 𝒘𝟎, 𝒛 )



Different training set induces distinct LPK. Set of LPKs with constrained RKHS norm:

Set of NNs trained to time 𝑇 from all feasible 𝑆′	:

Generalization bound for NN trained by gradient flow

𝒦C = KC ⋅,⋅; 𝑆# : 𝑆# ∈ supp(𝜇⨂; ,
1
𝑛J
C
<,K

KC 𝑧<′, 𝑧K#; 𝑆′ ≤ 𝐵J}

𝑆 = 𝑧< <=:
; ,  𝑆# = 𝑧<# <=:;

ℓ(𝑤', 𝑧)
𝒢C

ℓ(𝑤L, 𝑧)

𝒢C = 𝑔 𝑧 =C
<=:

;

−
1
𝑛
K 𝑧, 𝑧<′; 𝑆′ + ℓ 𝑤%, 𝑧 : 	K ⋅,⋅; 𝑆# ∈ 𝒦C

ℓ 𝑤C , 𝑧  trained from 𝑆′ 

21

Set of LPKs 



• The set of trained NNs 𝒢L can be much smaller than the whole set of NNs
• We characterize 𝒢L	through the equivalence between NN and KM

Intuition of our work

ℓ(𝑤', 𝑧)

𝒢C

ℓ(𝑤L, 𝑧)

whole set of NNs

𝒢:

𝒢E

𝑆:′

𝑆J′

𝑆$′, 𝑆)′: different set of 
samples
𝒢*: set of NNs at time 𝑡 
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Empirical Rademacher complexity of a function class 𝒢,

Rademacher complexity 

cℛI 𝒢 =
1
𝑛
𝔼𝝈 sup

Z∈𝒢
@
"#$

%

𝜎"𝑔(𝑧")

23

𝝈 = 𝜎%, … , 𝜎& ~	Unif({+1,−1})

A measure of the richness of a function class. Measure the ability of the functions in 𝒢 to correlate 
with random noise.

𝐺𝐴𝑃 ≤ 2 cℛI 𝒢

For 𝒢 = {ℓ 𝑓 𝑥 , 𝑦 : 	𝑓 ∈ ℱ} and ℓ 𝑓, 𝑦 ∈ [0, 1], with high probability [Mohri et al. 2018],

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press, 2018.



Compute the Rademacher complexity of	𝒢L,

Generalization bound for NN trained by gradient flow

𝐺𝐴𝑃 ≤ 2	min(𝑈$, 𝑈))

𝑈$ =
𝐵
𝑛

sup]∈𝒦"@
"#$

%

K 𝑧", 𝑧"; 𝑆! +	@
"_&

Δ(𝑧", 𝑧&)	

maximum magnitude of the loss gradient in 
𝒦& evaluated with 𝑆 throughout the training 
trajectory.

range of variation of LPK in 𝒦& 

Can be estimated with training samples

Δ 𝑧#, 𝑧+ =
1
2
[sup0∈𝒦"K 𝑧#, 𝑧+; 𝑆!

     −inf0∈𝒦"K 𝑧#, 𝑧+; 𝑆! ]
   

24

K3 𝑧#, 𝑧#; 𝑆′ = f
(

3
∇"ℓ 𝑤, 𝑧# ) 𝑑𝑡	



Generalization bound for NN trained by gradient flow

𝑈$ =
𝐵
𝑛

sup]∈𝒦"@
"#$

%

K 𝑧", 𝑧"; 𝑆! +	@
"_&

Δ(𝑧", 𝑧&)	

Similar with the bound of KM but with an 
additional supremum over 𝒦& 

Due to the set of kernels 𝒦&

𝐺𝐴𝑃 ≤
𝐵
𝑛 n

#$%

&

𝐾 𝑥#, 𝑥#	

[Bartlett, P. L. and Mendelson, S. 2002]

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of 
Machine Learning Research, 2002.

• When |𝒦&| = 1, 𝑈%	recovers KM’s bound

25

Bound for general NNs Bound for KM with a fixed 
kernel 𝐾



𝝐–cover: given a set 𝑈, distance 𝜖, norm ⋅ , V ⊆ 𝑈 is a 𝜖–cover of 𝑈 when

Covering number 

Discretize or cover the function class with finite representative elements.

sup
A∈d

inf
e∈f

𝑎 − 𝑏 ≤ 𝜖

26

Covering number 𝓝(𝑼, 𝝐, 	 ): minimum cardinality of 𝜖–cover.
• Can be used to analyze generalization  
• Has a relation with Rademacher complexity 



Analyze the covering number of	𝒢L,

Generalization bound for NN trained by gradient flow

𝑈) = inf
gh'

𝜖
𝑛
+

2 ln𝒩(𝒢LI, 𝜖, 	 $)
𝑛

If the variation of the loss with different training data is small, 
𝑈)	will be small.

• Can be estimated with training samples
• Can get similar bounds as 𝑈%, 𝑈# for stochastic gradient flow

𝒢3- = 𝑔 𝐙 = 𝑔 𝑧% , … , 𝑔 𝑧& : 𝑔 ∈ 𝒢3 , 
𝒩(𝒢3-, 𝜖, 	 %) is the covering number of 𝒢3-. 

𝐺𝐴𝑃 ≤ 2	min(𝑈$, 𝑈))
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Generalization bound for NN trained by gradient flow
28

NN Architecture 
Finite-width Ultra-wide

Vacuous

Loose

Tight

VC dimension, norm-based bounds 
[Bartlett et al., 2019, 2017]

This work 

NTK-based bounds
[Arora et al., 2019; 
Cao & Gu, 2019]

Tightness

Compare with previous generalization bounds:



Generalization bound for NN trained by gradient flow

Compare with previous NTK-based bounds

Arora et al.. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. ICML 2020
Cao, Y. and Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. NeurIPS 2019.
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Much more general results!



Experiment: Generalization bound for NN trained by gradient flow

Experiment of two-layer NN 
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55957.3

140.7

1.44

0.03

0.01

0.1

1

10

100

1000

10000

100000

VC dimension
bound

Norm-based
bound

NTK-based bound
(ultra-wide NN)

Our bound

Generalization bound

Tight bound!



For an infinite-width NN with constant NTK Θ 𝑥, 𝑥′ , we can bound LPK with NTK

Case study: Ultra-wide NN

𝐺𝐴𝑃 ≤
𝜌𝐵 𝑇
𝑛

@
",&
Θ 𝑥", 𝑥& 	

Compare with H𝑂(𝐿	 ⋅ )	𝐲# j $%𝐲	
% ) [Cao & Gu, 2019],

1. no dependence on the number of layers 𝐿
2. holds for NNs with multiple outputs

𝜌: Lipschitz constant of ℓ(𝑓, 𝑦)

31

NNFinite-width Ultra-wide

Vacuous

Loose

Tight

VC dimension, norm-based bounds 
[Bartlett et al., 2019, 2017]

NTK-based bounds
[Arora et al., 2019; 
Cao & Gu, 2019]

Tightness

Case studyThis work 



Use the bound to estimate the test loss and design minimum-training NAS 
algorithms:

Application: Neural architecture search

Gene(𝑤, 𝑆) = 𝐿I 𝑤 + 2𝑈DZM

“RS”: randomly sample 100 architectures and 
select the one with the best metric value

Gene 𝑤, 𝑆 %: Gene(𝑤, 𝑆) at epoch 1

“Optimal”: the best test accuracy achievable in 
NAS-Bench-201 search space

“Best”: best accuracy over the four runs

𝑈456: simplified from the bound of stochastic 
gradient flow

NAS-Bench-201

32



Outline 
1. Introduction and motivation

• Kernel machine and neural tangent kernel
• Generalization theory of neural networks
• Motivation of this work
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• Neural architecture search

3. Conclusion and future works
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Conclusion

Generalization 
bound for NN

§ Holds for general NNs
§ Tighter bounds!

2 Useful in theory 
and practice 

§ Better bound for ultra-wide NNs 
§ Minimum-training NAS algorithms

3New equivalence 
between NN and KM

§ New kernel LPK 
§ Much more general equivalence

1

34

ℓ 𝑤& , 𝑧 = 	P
-(%

.

−
1
𝑛 K& 𝑧, 𝑧-; 𝑆 + ℓ(𝑤!, 𝑧)

Kernel machine 
with LPK

55957.3

140.7
1.44

0.03
0.01

VC…

Norm
-…

NTK-bas
ed…

Our 
boun

d

Generalization bound



Future works

Equivalence & 
generalization for other 
optimization algorithms

2

§ SGD with momentum 
§ Adam

Applications based 
on the theory

1

§ Analyze different NN 
architectures from this 
equivalence

§ Design better kernel 
function based on LPK

§ Quantify the influence of 
each training sample (core 
set selection, interpretability, 
robustness)

§ …

35

Improve the 
generalization bound

3

§ Remove supremum
§ Tighter bound
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