

Analyzing Generalization of Neural Networks through Loss Path Kernels

Y. Chen¹, W. Huang², H. Wang³, C. Loh³, A. Srivastava³, L. Nguyen⁴, and T.-W. Weng¹

¹UCSD, ²RIEKN AIP, ³MIT-IBM Watson AI Lab, ⁴IBM Research

03/04/2024

Outline

- 1. Introduction and motivation
- 2. Main results
- 3. Conclusion and future works

Outline

1. Introduction and motivation

- Kernel machine and neural tangent kernel
- Generalization theory of neural networks
- Motivation of this work

2. Main results

- Loss path kernel and the equivalence between NN and KM
- Generalization bound for NN trained by gradient flow
- Case study and Application
 - Ultra-wide NN
 - Neural architecture search
- 3. Conclusion and future works

Kernel Machine

- Kernel: $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$, $\Phi: \mathcal{X} \to \mathcal{H}$ maps the data to a (potentially infinite dimensional) feature space.
- Kernel machine (KM): linear function in the feature space

$$g(x) = \langle \beta, \Phi(x) \rangle + b = \sum_{i=1}^{n} a_i K(x, x_i) + b$$
, where $\beta = \sum_{i=1}^{n} a_i \Phi(x_i)$

• RKHS norm of $g: \|\beta\| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j)}$

• Neural Tangent Kernel (NTK) (Jacot et al., 2018):

 $\widehat{\Theta}(w; x, x') = \langle \nabla_w f(w, x), \nabla_w f(w, x') \rangle$

measures the similarity between data points x, x' by comparing their gradients

• Under certain conditions (e.g., infinite width limit and NTK initialization), NTK at initialization w₀ converges to a deterministic limit and keeps constant during training:

$$\widehat{\Theta}(w_0; x, x') \to \Theta_{\infty}(x, x')$$

NTK at initialization Independent of w_0

 $\nabla_w f(w, x)$

 $\nabla_{w} f(w, x')$

W

 Infinite-width neural network (NN) trained by gradient descent with mean square loss ⇔ kernel regression with NTK [Jacot et al., 2018; Arora et al., 2019]

> kernel regression: linear regression in the feature space $\min_{w_t} \sum_{i=1}^n \|\langle w_t - w_0, \nabla_w f(w_0, x_i) \rangle - y_i \|^2$

• Wide NNs are linear in the parameter space [Lee et al., 2019]: $f(w_t, x) = f(w_0, x) + \langle \nabla_w f(w_0, x), w_t - w_0 \rangle + O(\frac{1}{\sqrt{m}}) \qquad m: \text{ width of NN}$

 Infinite-width NN trained with ℓ₂ regularized loss ⇔ ℓ₂ regularized KMs with NTK, e.g. SVM [Chen et al., 2021]

Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

Ultra-wide NN trained with

$$L(w) = \frac{\lambda}{2} \|w^{(L)}\|^2 + \sum_{i=1}^n \ell(f(w, x_i), y_i)$$

KM $g(\beta, x) = \langle \beta, \nabla_w f(w_0, x) \rangle$ with $L(\beta) = \frac{\lambda}{2} \|\beta\|^2 + \sum_{i=1}^n \ell(g(\beta, x_i), y_i)$

 $w^{(L)}$: last layer of NN

SVM: $\ell(z, y) = \max(0, 1 - zy)$

equivalent

Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

Our prior work [Chen et al., 2021]:

λ	Loss $\ell(z,y)$	Kernel machine
$\lambda = 0$ ([1,2])	$(y-z)^2$	Kernel regression
$\lambda \rightarrow 0$ (ours)	$\max(0, 1 - yz)$	Hard margin SVM
$\lambda > 0$ (ours)	$\begin{array}{c} \max(0,1-yz) \\ \max(0,1-yz)^2 \\ \max(0, y-z -\epsilon) \\ (y-z)^2 \\ \log(1+e^{-yz}) \end{array}$	(1-norm) soft margin SVM 2-norm soft margin SVM Support vector regression Kernel ridge regression (KRR) Logistic regression with ℓ_2 regularization

Suppose ℓ is Lipschitz and smooth,

$$\|f(x) - g(x)\| \le \tilde{O}(\frac{1}{\sqrt{m}})$$

Chen et al., 2021. On the equivalence between neural network and support vector machine. NeurIPS 2021.

These equivalences are useful for analyzing NNs
 But only holds for infinite-width/ultra-wide NNs

Q1. Can we establish a connection or equivalence between general NNs (vs ultra-wide NNs) and KMs?

How do the neural networks (NN) generalize on test data?

generalization gap:

$$GAP = \mathbb{E}_{z \sim \mu} \left[\ell(w, z) \right] - \frac{1}{n} \sum_{i=1}^{n} \ell(w, z) \leq ?$$

$$L_{\mu}(w): \text{ population loss} \qquad L_{S}(w): \text{ training loss}$$

$$GAP \leq \sqrt{\frac{|\mathcal{G}|}{n}} \qquad \qquad \mathcal{G}: \text{ NN function class} \\ n: \# \text{ of samples}$$

Generalization theory: general NNs

$$GAP \leq O(\sqrt{L \frac{\# of \ parameters}{n}} \log(n))$$

L: # of layers n: # of samples W_l: weight of layer *l*

- 2. Norm-based bounds [Bartlett et al., 2017; ...] $GAP \le O(\frac{\prod_{l=1}^{L} ||W_l||}{\sqrt{n}})$ $O(\frac{||W_l||}{\sqrt{n}})$
 - Do not explain the generalization ability of overparameterized NNs. [Belkin et al., 2019]
 - Vacuous: too large to be useful

- Other bounds:
 - PAC-Bayes bounds (mainly focus on stochastic NNs)
 - Information-theoretical approach (expected bound)

Bartlett, et al.. Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks. JMLR 2019. Bartlett, et al.. Spectrally-normalized margin bounds for neural networks. NeurIPS 2017.

Generalization theory: ultra-wide NNs

• Arora et al., 2019: for ultra-wide two-layer FCNN,

$$GAP \leq \sqrt{\frac{2 \mathbf{y}^{\mathsf{T}} (\mathbf{H}^{\infty})^{-1} \mathbf{y}}{n}}$$
 \mathbf{H}^{∞} : NTK of the first layer

• Cao & Gu, 2019: for ultra-wide L-layer FCNN,

 These bounds only hold for ultra-wide NNs

$$GAP \leq \tilde{O}(L \cdot \sqrt{\frac{2 \mathbf{y}^{\top}(\Theta)^{-1} \mathbf{y}}{n}})$$

Q2. Can we establish tight (vs vacuous) generalization bounds for general NNs (vs ultra-wide NNs)?

Motivation of this work

- 1. Can we establish a connection or equivalence between general NNs (vs ultrawide NNs) and Kernel machines? It can have many benefits:
 - 1. New understanding of NN trained with SGD
 - 2. Generalization bound for NNs from the perspective of kernel
 - 3. Analyze NN architectures from this equivalence
 - 4. Improve kernel method from the NN viewpoint
- 2. Can we establish tight (vs vacuous) generalization bounds for general NNs (vs ultra-wide NNs)?

Yes!

Outline

1. Introduction and motivation

- Kernel machine and neural tangent kernel
- Generalization theory of neural networks
- Motivation of this work

2. Main results

- Loss path kernel and the equivalence between NN and KM
- Generalization bound for NN trained by gradient flow
- Case study and Application
 - Ultra-wide NN
 - Neural architecture search
- 3. Conclusion and future works

Loss Path Kernel

Neural tangent kernel (NTK):

$$\widehat{\Theta}(w; x, x') = \langle \nabla_w f(w, x), \nabla_w f(w, x') \rangle$$

Loss Tangent Kernel (LTK): z = (x, y)

$$\overline{\mathrm{K}}(w;z,z') = \langle \nabla_w \ell(w,z), \nabla_w \ell(w,z') \rangle$$

Loss Path Kernel (LPK):

$$K_T(z, z'; S) = \int_0^T \overline{K}(w(t); z, z') dt$$
$$= \int_0^T \langle \nabla_w \ell(w, z), \nabla_w \ell(w, z') \rangle dt$$

Equivalence between neural network and kernel machine

With gradient flow (gradient descent with infinitesimal step size):

$$\frac{w(t+1) - w(t)}{\eta} = -\nabla_w L_S(w(t)) \qquad \xrightarrow{\eta \to 0} \qquad \frac{dw(t)}{dt} = -\nabla_w L_S(w(t))$$

We can derive equivalence:

$$\ell(w_T, z) = \left\{ \sum_{i=1}^{n} -\frac{1}{n} K_T(z, z_i; S) \right\} + \ell(w_0, z)$$
Loss function
at time T
Kernel machine
with LPK

Very general equivalence!

Equivalence between neural network and kernel machine

Proof:

$$\frac{d\ell(w_t, z)}{dt} = \left\langle \nabla_w \ell(w_t, z), \frac{dw_t}{dt} \right\rangle \qquad \text{By chain rule} \\
= \left\langle \nabla_w \ell(w_t, z), -\nabla_w L_S(w_t) \right\rangle \qquad \text{Gradient flow: } \frac{dw_t}{dt} = -\nabla_w L_S(w_t) \\
= \left\langle \nabla_w \ell(w_t, z), -\frac{1}{n} \sum_{i=1}^n \nabla_w \ell(w_t, z_i) \right\rangle \qquad \text{Definition of } L_S(w_t) \\
= -\frac{1}{n} \sum_{i=1}^n \left\langle \nabla_w \ell(w_t, z), \nabla_w \ell(w_t, z_i) \right\rangle \qquad \text{Rearrange}$$

Integrate from 0 to *T*:

$$\ell(w_T, z) - \ell(w_0, z) = -\frac{1}{n} \sum_{i=1}^n \int_0^T \langle \nabla_w \ell(w_t, z), \nabla_w \ell(w_t, z_i) \rangle dt = \sum_{i=1}^n -\frac{1}{n} K_T(z, z_i; S)$$

Stochastic gradient flow (SGD with infinitesimal step size):

$$\frac{w(t+1) - w(t)}{\eta} = -\nabla_w L_{S_t}(w(t)) \qquad \xrightarrow{\eta \to 0} \qquad \frac{dw(t)}{dt} = -\nabla_w L_{S_t}(w(t))$$

 $S_t \subseteq \{1, ..., n\}$ is the indices of batch data, $m = |S_t|$: batch size

Equivalence: $\begin{aligned} & \text{Sum of KMs with LPK} \\ \ell(w_T, z) = \left(\sum_{t=1}^{T-1} \sum_{i \in S_t} -\frac{1}{m} K_T(z, z_i; S)\right) + \ell(w_0, z) \end{aligned}$

Compare with previous equivalence results:

Equivalence between neural network and kernel machine

Verify the equivalence: two-layer NN

- NN trained by gradient flow (GF) exactly equal to the KM
- NN trained by gradient descent (GD) is also close with the KM

Different training set induces distinct LPK. Set of LPKs with constrained RKHS norm:

Set of LPKs

$$\mathcal{K}_T = \left\{ \mathrm{K}_T(\cdot, \cdot; S') : S' \in \mathrm{supp}(\mu^{\otimes n}), \frac{1}{n^2} \sum_{i,j} \mathrm{K}_T(z_i', z_j'; S') \leq B^2 \right\}$$

$$S = \{z_i\}_{i=1}^n, S' = \{z'_i\}_{i=1}^n$$

Set of NNs trained to time T from all feasible S':

$$\ell(w_0, z) \bullet \mathcal{G}_T$$

$$\mathcal{G}_T = \left\{ g(z) = \sum_{i=1}^n -\frac{1}{n} \mathsf{K}(z, z_i'; S') + \ell(w_0, z); | \mathsf{K}(\cdot, \cdot; S') \in \mathcal{K}_T \right\}$$
$$\ell(w_T, z) \text{ trained from } S'$$

Intuition of our work

- The set of trained NNs \mathcal{G}_T can be much smaller than the whole set of NNs
- We characterize G_T through the equivalence between NN and KM

Empirical Rademacher complexity of a function class G,

$$\widehat{\mathcal{R}}_{S}(\mathcal{G}) = \frac{1}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{g \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} g(z_{i}) \right] \qquad \boldsymbol{\sigma} = (\sigma_{1}, \dots, \sigma_{n}) \sim \text{Unif}(\{+1, -1\})$$

A measure of the richness of a function class. Measure the ability of the functions in G to correlate with random noise.

For $\mathcal{G} = \{\ell(f(x), y): f \in \mathcal{F}\}$ and $\ell(f, y) \in [0, 1]$, with high probability [Mohri et al. 2018],

 $GAP \leq 2\hat{\mathcal{R}}_{S}(\mathcal{G})$

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press, 2018.

Compute the Rademacher complexity of G_T ,

 $GAP \leq 2 \min(U_1, U_2)$

$$U_{1} = \frac{B}{n} \sqrt{\sup_{K \in \mathcal{K}_{T}} \sum_{i=1}^{n} K(z_{i}, z_{i}; S') + \sum_{i \neq j} \Delta(z_{i}, z_{j})} \qquad \Delta(z_{i}, z_{j}) = \frac{1}{2} [\sup_{K \in \mathcal{K}_{T}} K(z_{i}, z_{j}; S') - \inf_{K \in \mathcal{K}_{T}} K(z_{i}, z_{j}; S')]}$$
maximum magnitude of the loss gradient in
 \mathcal{K}_{T} evaluated with *S* throughout the training
trajectory.
 $K_{T}(z_{i}, z_{i}; S') = \int_{0}^{T} ||\nabla_{w} \ell(w, z_{i})||^{2} dt$
range of variation of LPK in \mathcal{K}_{T}

Can be estimated with training samples

Bound for general NNs

additional supremum over \mathcal{K}_{T}

Bound for KM with a fixed kernel *K*

$$U_{1} = \frac{B}{n} \sqrt{\sup_{K \in \mathcal{K}_{T}} \sum_{i=1}^{n} K(z_{i}, z_{i}; S') + \sum_{i \neq j} \Delta(z_{i}, z_{j})}$$

Similar with the bound of KM but with an Due to the set of kernels \mathcal{K}_{T}

$$GAP \leq \frac{B}{n} \sqrt{\sum_{i=1}^{n} K(x_i, x_i)}$$

[Bartlett, P. L. and Mendelson, S. 2002]

• When $|\mathcal{K}_T| = 1$, U_1 recovers KM's bound

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 2002.

Covering number

 ϵ -cover: given a set *U*, distance ϵ , norm $\|\cdot\|$, V ⊆ *U* is a ϵ -cover of *U* when

 $\sup_{a \in U} \inf_{b \in V} ||a - b|| \le \epsilon$

Discretize or cover the function class with finite representative elements.

Covering number $\mathcal{N}(U, \epsilon, || ||)$: minimum cardinality of ϵ -cover.

- Can be used to analyze generalization
- Has a relation with Rademacher complexity

Analyze the covering number of \mathcal{G}_T ,

 $GAP \leq 2 \min(U_1, U_2)$

$$U_{2} = \inf_{\epsilon > 0} \left(\frac{\epsilon}{n} + \sqrt{\frac{2 \ln \mathcal{N}(\mathcal{G}_{T}^{S}, \epsilon, \| \|_{1})}{n}} \right)$$

 $\mathcal{G}_T^S = \{g(\mathbf{Z}) = (g(z_1), \dots, g(z_n)) : g \in \mathcal{G}_T\},\$ $\mathcal{N}(\mathcal{G}_T^S, \epsilon, \| \|_1) \text{ is the covering number of } \mathcal{G}_T^S.$

If the variation of the loss with different training data is small, U_2 will be small.

- Can be estimated with training samples
- Can get similar bounds as U_1 , U_2 for stochastic gradient flow

Compare with previous generalization bounds:

Tightness

Generalization bound for NN trained by gradient flow

Compare with previous NTK-based bounds

	Arora et al.	Cao & Gu	Ours
Bound	$\sqrt{\frac{2\mathbf{Y}^{\top}(\mathbf{H}^{\infty})^{-1}\mathbf{Y}}{n}}$	$\tilde{O}(L \cdot \sqrt{\frac{\mathbf{Y}^{\top}(\mathbf{\Theta})^{-1}\mathbf{Y}}{n}})$	Theorem 3, Theorem 5
Model	Ultra-wide two-layer FCNN	Ultra-wide FCNN	General continuously differentiable NN
Data	i.i.d. data with $\ \boldsymbol{x}\ = 1$	i.i.d. data with $\ \boldsymbol{x}\ = 1$	i.i.d. data
Loss	Square loss	Logistic loss	Continuously differentiable & bounded loss
During training	No	No	Yes
Multi-outputs	No	No	Yes
Training algorithm	GD	SGD	(Stochastic) gradient flow

Much more general results!

Arora et al.. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. ICML 2020 Cao, Y. and Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. NeurIPS 2019.

Experiment: Generalization bound for NN trained by gradient flow

Experiment of two-layer NN

For an infinite-width NN with constant NTK $\Theta(x, x')$, we can bound LPK with NTK

$$GAP \leq \frac{\rho B \sqrt{T}}{n} \left| \sum_{i,j} |\Theta(x_i, x_j)| \right|$$

 ρ : Lipschitz constant of $\ell(f, y)$

Compare with
$$\tilde{O}(L \cdot \sqrt{\frac{2 \mathbf{y}^{\top}(\Theta)^{-1} \mathbf{y}}{n}})$$
 [Cao & Gu, 2019],

1. no dependence on the number of layers L

2. holds for NNs with multiple outputs

Use the bound to estimate the test loss and design minimum-training NAS algorithms:

 $Gene(w, S) = L_S(w) + 2U_{sgd}$

 U_{sgd} : simplified from the bound of stochastic gradient flow

	CIFAR-10		CIFAR-100	
Algorithm	Accuracy	Best	Accuracy	Best
Baselines				
TENAS [13]	93.08±0.15	93.25	70.37 ± 2.40	73.16
RS + LGA ₃ [39]	93.64		69.77	
Ours				
$RS + Gene(w, S)_1$	93.68±0.12	93.84	72.02 ± 1.43	73.15
$RS + Gene(w, S)_2$	93.79 ±0.18	94.02	72.76 ±0.33	73.15
Optimal	94.37		73.51	

NAS-Bench-201

"RS": randomly sample 100 architectures and select the one with the best metric value

 $Gene(w, S)_1$: Gene(w, S) at epoch 1

"Optimal": the best test accuracy achievable in NAS-Bench-201 search space

"Best": best accuracy over the four runs

Outline

1. Introduction and motivation

- Kernel machine and neural tangent kernel
- Generalization theory of neural networks
- Motivation of this work
- 2. Main results
 - Loss path kernel and the equivalence between NN and KM
 - Generalization bound for NN trained by (stochastic) gradient flow
 - Case study and Application
 - Ultra-wide NN
 - Neural architecture search

3. Conclusion and future works

Conclusion

New equivalence between NN and KM

- New kernel LPK
- Much more general equivalence

 $\ell(w_T, z) = \sum_{i=1}^n -\frac{1}{n} K_T(z, z_i; S) + \ell(w_0, z)$

Generalization bound for NN

- Holds for general NNs
- Tighter bounds!

3

Useful in theory and practice

- Better bound for ultra-wide NNs
- Minimum-training NAS algorithms

Algorithm	CIFAR-10 Accuracy	Best	CIFAR-100 Accuracy	Best
Baselines TENAS [13] RS + LGA ₃ [39]	93.08±0.15 93.64	93.25	70.37±2.40 69.77	73.16
Ours RS + Gene $(w, S)_1$ RS + Gene $(w, S)_2$	93.68±0.12 93.79±0.18	93.84 94.02	72.02±1.43 72.76 ±0.33	73.15 73.15
Optimal	94.37		73.51	

Future works

1

. . .

Applications based on the theory

- Analyze different NN architectures from this equivalence
- Design better kernel function based on LPK
- Quantify the influence of each training sample (core set selection, interpretability, robustness)

Equivalence & generalization for other optimization algorithms

- SGD with momentum
- Adam

Improve the generalization bound

- Remove supremum
- Tighter bound

References

- 1. Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in neural networks. Advances in neural information processing systems, 31, 2018.
- 2. Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. On exact computation with an infinitely wide neural net. Advances in Neural Information Processing Systems, 32, 2019.
- 3. Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J. Wide neural networks of any depth evolve as linear models under gradient descent. Advances in neural information processing systems, 32, 2019.
- 4. Chen, Y., Huang, W., Nguyen, L., and Weng, T.-W. On the equivalence between neural network and support vector machine. Advances in Neural Information Processing Systems, 34, 2021.
- 5. Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling modern machine-learning practice and the classical bias–variance tradeoff. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.
- 6. Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning Research, 2019.
- 7. Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In International Conference on Machine Learning, pp. 322–332. PMLR, 2019.
- 8. Cao, Y. and Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. Advances in neural information processing systems, 32, 2019.
- 9. Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 2002.
- 10. Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-normalized margin bounds for neural networks. Advances in neural information processing systems, 30, 2017.

Thank you for listening!